4.7 Canonical ordination: redundancy analysis (RDA) and Canonical correspondence analysis (CCA)

The ordination methods reviewed above are meant to represent the variation of a data matrix in a reduced number of dimensions. Interpretation of the structures is done a posteriori, hence the expression indirect gradient analysis used for this approach. For instance, one can interpret the CA ordination axes (one at a time), by regressing the object scores on one or several environmental variables. The ordination procedure itself has not been influenced by these external variables, which become involved only after the computation. One lets the data matrix express itself without constraint. This is an exploratory, descriptive approach.

Constrained ordination (RDA and CCA), on the contrary, explicitly puts into relationship two matrices: one dependent matrix and one explanatory matrix. Both are implied at the stage of the ordination. This approach is called direct gradient analysis, and integrates the techniques of ordination and multiple regression (Table VIII):

Table VIII - Relationship between ordination and regression

<table>
<thead>
<tr>
<th>Data to explain</th>
<th>Explanatory variables</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 variable</td>
<td>1 variable</td>
<td>Simple regression</td>
</tr>
<tr>
<td>1 variable</td>
<td>(m) variables</td>
<td>Multiple regression</td>
</tr>
<tr>
<td>(p) variables</td>
<td>-</td>
<td>Simple ordination</td>
</tr>
<tr>
<td>(p) variables</td>
<td>(m) variables</td>
<td>Canonical ordination</td>
</tr>
</tbody>
</table>

In RDA and CCA, the ordination process is directly influenced by a set of explanatory variables: the ordination seeks the axes that are best explained by a linear combination of explanatory variables. In other words, these methods seek the combinations of explanatory variables that best explain the variation of the dependent matrix. It is therefore a constrained ordination process. The difference with an
An unconstrained ordination is important: the matrix of explanatory variables conditions the "weight" (eigenvalues), the orthogonality and the direction of the ordination axes. Here one can say that the axes explain (in the statistical sense) the variation of the dependent matrix.

A constrained ordination produces as many canonical axes as there are explanatory variables, but each of these axes is a linear combination (a multiple regression model) of all explanatory variables. Examination of the canonical coefficients (i.e., the regression coefficients of the models) of the explanatory variables on each axis allows to know which variable(s) is or are most important to explain the first, second... axis.

The variation of the data matrix that cannot be explained by the environmental variables is expressed on a series of unconstrained axes following the canonical ones.

Due to the fact that in many cases the explanatory variables are not dimensionally homogeneous, usually canonical ordinations are done with standardized explanatory variables. In RDA, this does not affect the choice between running the analysis on a covariance or a correlation matrix, however, since this choice relates to the response (y) variables.

Depending on the algorithm used, the search for the optimal linear combinations of explanatory variables, that represent the orthogonal canonical axes, is done sequentially (axis by axis, using an iterative algorithm) or in one step (direct algorithm). Figure 26, which is Figure 11.2 of Legendre & Legendre (1998, p. 581), summarises the steps of a redundancy analysis (RDA) using the direct algorithm:

- regress the p dependent variables, each one separately, on the explanatory variables; compute the fitted and residual values of the regressions;
- run a PCA of the matrix of fitted values of these regressions;
- use the matrix of canonical eigenvectors to compute *two sorts of ordinations*:

- an ordination in the space of the dependent variables (species space); this yields the "sample scores" and the "species scores" of Canoco; the ordination axes are **not** orthogonal in this ordination;

- an ordination in the space of the explanatory variables; this yields the fitted site scores, called "Sample scores which are linear combinations of environmental variables" in Canoco; the canonical axes obtained here are orthogonal to one another;

- use the matrix of residuals from the multiple regressions to compute an unconstrained ordination (PCA in the case of an RDA).

Redundancy analysis (RDA) is the canonical version of principal component analysis (PCA). Canonical correspondence analysis (CCA) is the canonical version of correspondence analysis (CA).

Due to various technical constraints, the maximum numbers of canonical and non-canonical axes differ (Table IX):

Table IX - Maximum number of non-zero eigenvalues and corresponding eigenvectors that may be obtained from canonical analysis of a matrix of response variables \(Y(n \times p) \) and a matrix of explanatory variables \(X(n \times m) \) using redundancy analysis (RDA) or canonical correspondence analysis (CCA). This is Table 11.1 from Legendre & Legendre (1998, p.588).

<table>
<thead>
<tr>
<th></th>
<th>Canonical eigenvalues and eigenvectors</th>
<th>Non-canonical eigenvalues and eigenvectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDA</td>
<td>(\min[p, m, n-1])</td>
<td>(\min[p, n-1])</td>
</tr>
<tr>
<td>CCA</td>
<td>(\min[p-1, m, n-1])</td>
<td>(\min[p-1, n-1])</td>
</tr>
</tbody>
</table>
Regress each variable y on table X and compute the fitted (\hat{y}) and residual (y_{res}) values.

Data table \mathbf{Y} (centred variables)

Data table \mathbf{X} (centred var.)

YU = ordination in the space of variables \mathbf{Y}

YU = ordination in the space of variables \mathbf{X}

$\hat{Y} = X [X'X]^{-1} X'Y$

$U = \text{matrix of eigenvectors (canonical)}$

$\hat{Y}U = \text{ordination in the space of variables } \mathbf{Y}$

$U_{res} = \text{matrix of eigenvectors (of residuals)}$

$Y_{res}U_{res} = \text{ordination in the space of residuals}$

Residual values from the multiple regressions

Fitted values from the multiple regressions

PCA
Figure 26 - (preceding page) The steps of redundancy analysis using a direct algorithm. This is Figure 11.2 of Legendre & Legendre (1998).

Graphically, the results of RDA and CCA are presented in the form of **biplots** or **triplots**, i.e. scattergrams showing the objects, response variables (usually species) and explanatory variables on the same diagram. As for the explanatory variables, they can be qualitative (the multiclass ones are coded as a series of binary variables) or quantitative. A qualitative explanatory variable is represented on the bi- or triplot as the centroid of the sites that have the description "1" for that variable ("Centroids of environmental variables" in Canoco), and the quantitative ones are represented as vectors (the vector apices are given under the name "Biplot scores of environmental variables" in Canoco). The analytical choices are the same as for PCA and CA with respect to the analysis on a covariance or correlation matrix (RDA) and the scaling types (RDA and CCA). Interpretation for RDA:

- **RDA Scaling 1 = Distance biplot:** the eigenvectors are scaled to unit length; the main properties of the biplot are the following:

 1. Distances among objects in the biplot are approximations of their Euclidean distances in multidimensional space.
 2. Projecting an object at right angle on a response variable or a quantitative explanatory variable approximates the position of the object along that variable.
 3. The angles among response vectors are meaningless.
 4. The angles between response and explanatory variables in the biplot reflect their correlations.
 5. The relationship between the centroid of a qualitative explanatory variable and a response variable (species) is found by projecting the centroid at right angle on the variable (as for individual objects).
 6. Distances among centroids, and between centroids and individual objects, approximate Euclidean distances.
• **RDA Scaling 2 = correlation biplot:** the eigenvectors are scaled to the square root of their eigenvalue. The main properties of the biplot are the following:

(1) Distances among objects in the biplot are not approximations of their Euclidean distances in multidimensional space.

(2) Projecting an object at right angle on a response or an explanatory variable approximates the value of the object along that variable.

(3) The angles in the biplot between response and explanatory variables, and between response variables themselves or explanatory variables themselves, reflect their correlations.

(4) The angles between descriptors in the biplot reflect their covariances or correlations.

(5) The relationship between the centroid of a qualitative explanatory variable and a response variable (species) is found by projecting the centroid at right angle on the variable (as for individual objects).

(6) Distances among centroids, and between centroids and individual objects, do not approximate Euclidean distances.

In CCA, one can use the same types of scalings as in CA. Objects and response variables are plotted as points on the triplot. For the species and objects, the interpretation is the same as in CA. Interpretation of the explanatory variables:

• **CCA Scaling type 1** (focus on sites): (1) The position of object on a quantitative explanatory variable can be obtained by projecting the objects at right angle on the variable. (2) An object found near the point representing the centroid of a qualitative explanatory variable is more likely to possess the state "1" for that variable.

• **CCA Scaling type 2** (focus on species): (1) The optimum of a species along a quantitative environmental variable can be obtained by projecting the species at right angle on the variable. (2) A species
found near the centroid of a qualitative environmental variable is likely to be found frequently (or in larger abundances) in the sites possessing the state "1" for that variable.

Figure 27 provides a fictitious example of a CCA triplot. Figure 28 is a real example of RDA biplot showing the two first axes of a canonical ordination of 143 sites, 63 bird species, 15 quantitative environmental variables and 9 classes of qualitative variables. This figure is here merely to show that a biplot can become rather crowded when the data set is large. In this case, the 143 sites were not represented on the scatterplot.

Figure 27: ACC triplot showing the objects (black dots), the response variables (species, white squares), the quantitative explanatory variables (arrows) and the qualitative (binary) explanatory variables (stars). Type 2 scaling: explanations in the text.
Figure 28 - Real example of RDA biplot (RDA on a covariance matrix, scaling 2) showing the two first axes of a canonical ordination of 143 sites (not represented), 63 bird species (headless or full-headed arrows), 15 quantitative environmental variables (indented arrows) and 9 classes of qualitative variables (circles, squares and triangles).

4.8a Partial canonical ordination - Variation partitioning

In the same way as one can do partial regression, it is possible to run partial canonical ordinations. It is thus possible to run, for instance, a CCA of a species data matrix (Y matrix), explained by a matrix of climatic variables (X), controlling for the edaphic variables (W). Such an analysis would allow the user to assess how much species variation can be uniquely attributed to climate when the effect of the soil factors...
have been removed. This possibility has led Borcard et al. (1992)1 to
device a procedure called variation partitioning in a context of spatial
analysis. One explanatory matrix X contains the environmental
variables, and the other (W) contains the x-y geographical coordinates
of the sites, augmented by the terms of a third-order polynomial
function:

$$b_0 + b_1x + b_2y + b_3x^2 + b_4xy + b_5y^2 + b_6x^3 + b_7x^2y + b_8xy^2 + b_9y^3$$

The procedure aims at partitioning the variation of a Y matrix of
species data into following fractions (Figure 29):

[a] variation explainable only by matrix X
[b] variation explainable both by matrix X and matrix W
[c] variation explainable only by matrix W
[d] unexplained variation.

If run with RDA, the partitioning is done under a linear model, the
total SS of the Y matrix is partitioned, and it corresponds strictly to
what is obtained by multiple regression if the Y matrix contains only
one response variable. If run under CCA, the partitioning is done on
the total inertia of the Y matrix.

More recently, Borcard & Legendre (2002)2, Borcard et al. (2004)3
and Legendre & Borcard (2006)4 have proposed to replace the spatial
polynom by a much more powerful representation of space. The
method is called PCNM analysis. The acronym stands for Principal
Coordinates of Neighbour Matrices. See Chapter 6.

1 Borcard, D., P. Legendre, & P. Drapeau. 1992. Partialling out the spatial component of ecological
2 Borcard, D. & P. Legendre. 2002. All-scale spatial analysis of ecological data by means of principal
3 Borcard, D., P. Legendre, Avois-Jacquet, C. & Tuomisto, H. (2004). Dissecting the spatial structures of
4 Legendre, P. & D. Borcard. 2006. Quelles sont les échelles spatiales importantes dans un écosystème? In:
J.-J. Droebeke, M. Lejeune et G. Saporta (éd), Analyse statistique de données spatiales.
Figure 29 - The fractions of variation obtained by partitioning a response data set Y with two explanatory data matrices X and W.

Fractions $[a]+[b]$, $[b]+[c]$, $[a]$ alone and $[c]$ alone can be obtained by canonical or partial canonical analyses. Fraction $[b]$ does not correspond to a fitted fraction of variation and can only be obtained by subtraction of some of the fractions obtained by ordinations.

The procedure must be run as follows if one is interested in the R^2 values of the four fractions:

1. RDA (or CCA) of Y explained by X. This yields fractions $[a]+[b]$.
2. RDA (or CCA) of Y explained by W. This yields fractions $[b]+[c]$.
3. RDA (or CCA) of Y explained both by X and W. This yields fractions $[a]+[b]+[c]$.

The R^2 values obtained above are unadjusted, i.e. they do not take into account the numbers of explanatory variables used in matrices X and W. In canonical ordination as in regression analysis, R^2 always increases when an explanatory variable x_i is added to the model,
regardless of the real meaning of this variable. In the case of regression, to obtain a better estimate of the population coefficient of determination (ρ^2), Zarr (1999, p. 423)\(^5\), among others, propose to use an **adjusted coefficient of determination**:

$$R_{adj}^2 = 1 - \frac{(n-1)}{(n-m-1)}(1 - R^2)$$

As Peres-Neto *et al.*\(^6\) have shown using extensive simulations, this formula can be applied to the fractions obtained above **in the case of RDA (but not CCA)**, yielding adjusted fractions: $([a]+[b])_{adj}$, $([b]+[c])_{adj}$ and $([a]+[b]+[c])_{adj}$. These adjusted fractions can then be used to obtain the individual adjusted fractions:

4. Fraction $[a]_{adj}$ is obtained by subtracting $([b]+[c])_{adj}$ from $([a]+[b]+[c])_{adj}$.
5. Fraction $[b]_{adj}$ is obtained by subtracting $[a]_{adj}$ from $([a]+[b])_{adj}$.
6. Fraction $[c]_{adj}$ is obtained by subtracting $([a]+[b])_{adj}$ from $([a]+[b]+[c])_{adj}$.
7. Fraction $[d]_{adj}$ is obtained by subtracting $([a]+[b]+[c])_{adj}$ from 1 (i.e. the total variation of Y).

We strongly advocate the use of the adjusted coefficient of determination, together with RDA, for the partitioning of variation of ecological data matrices.

Alternately, if one is interested in the fitted site scores for fractions $[a]$ and $[c]$, the partitioning can be run using partial canonical ordinations. Note, however, that it is not possible to obtain the adjusted R^2 on this basis:

1. RDA (or CCA) of Y explained by X. This yields fractions $[a]+[b]$.

2. Partial RDA (or CCA) of Y explained by X, controlling for W. This yields fractions [a].

3. Partial RDA (or CCA) of Y explained by W, controlling for X. This yields fractions [c].

4. Fraction [b] is obtained by subtracting [a] from [a]+[b].

5. Fraction [d] is obtained by subtracting [a]+[b]+[c] from 1 (RDA) or the total inertia of Y (CCA).

It must be emphasised here that fraction [b] has nothing to do with the interaction of a ANOVA! In ANOVA, an interaction measures the effect that an explanatory variable (a factor) has on the influence of the other explanatory variable(s) on the dependent variable. An interaction can have a non-zero value when the two explanatory variables are orthogonal, which is the situation where fraction [b] is equal to zero. Fraction [b] arises because there is some correlation between matrices X and W. Note that in some cases fraction [b] can even take negative values. This happens, for instance, if matrices X and W have strong opposite effects on matrix Y while being positively correlated to one another.

This variation partitioning procedure can be extended to more than two explanatory matrices, and can be applied outside the spatial context.
4.8b Partial canonical ordination - Forward selection of environmental variables

There are situations where one wants to reduce the number of explanatory variables in a regression or canonical ordination model. Canoco and some functions in the R language allow this with a procedure of forward selection of explanatory variables. This is how it works:

1. Compute the independent contribution of all the \(m \) explanatory variables to the explanation of the variation of the response data table. This is done by running \(m \) separate canonical analyses.
2. Test the significance of the contribution of the best variable.
3. If it is significant, include it into the model as a first explanatory variable.
4. Compute (one at a time) the partial contributions (conditional effects) of the \(m-1 \) remaining explanatory variables, controlling for the effect of the one already in the model.
5. Test the significance of the best partial contribution among the \(m-1 \) variables.
6. If it is significant, include this variable into the model.
7. Compute the partial contributions of the \(m-2 \) remaining explanatory variables, controlling for the effect of the two already in the model.
8. The procedure goes on until no more significant partial contribution is found.

In Canoco 4.5, forward selection can be run either manually (at each step, the user asks for the test and decides whether to include a variable or not) or automatically. In the latter case, however, the program tests all the variables and includes them all into the model, significant or not. The user has then to ask for the forward selection summary (FS summary button), examine the conditional effects and
their probability, and rerun the analysis, retaining only the k first variables whose conditional effects are significant at a preestablished probability level.

Remarks

a) The tests are run by random permutations. See Sections 5.2 and 5.3.

b) Like all procedures of selection (forward, backward or stepwise), this one does not guarantee that the best model is found. From the second step on, the inclusion of variables is conditioned by the nature of the variables that are already in the model.

c) As in all regression models, the presence of strongly intercorrelated explanatory variables renders the regression/canonical coefficients unstable. Forward selection does not necessarily eliminate this problem since even strongly correlated variables may be admitted into a model.

d) Forward selection *can help* when several candidate explanatory variables are strongly correlated, but the choice has no *a priori* ecological validity. In this case it is often advisable to eliminate one of the intercorrelated variables on ecological basis rather than on statistical basis.

e) Forward selection is a rather conservative procedure when compared to backward elimination (see below): it tends to admit a smaller set of explanatory variables. In absolute terms, however, it is relatively liberal.

f) If one wants to select an even larger subset of variables, another choice is backwards elimination, where one starts with all the variables included, and remove one by one the variables whose partial contributions are not significant. The partial contributions must also be recomputed at each step. Backward elimination is not offered by Canoco not Dray's R function, however, and would need to be programmed separately.
g) In cases where several correlated explanatory variables are present, without clear a priori reasons to eliminate one or the other, one can examine the variance inflation factors (VIF) offered by Canoco.

h) The variance inflation factors (VIF) measure how much the variance of the canonical coefficients is inflated by the presence of correlations among explanatory variables. This measures in fact the instability of the regression model. As a rule of thumb, ter Braak recommends that variables that have a VIF larger than 20 be removed from the analysis. **Beware**: always remove the variables one at a time and recompute the analysis, since the VIF of every variable depends on all the others!

4.9 Distance-based redundancy analysis (db-RDA)

For cases where the user does not want to base the comparisons among objects on the distances that are preserved in CCA or RDA (including the species pre-transformations), another approach is possible for canonical ordination: db-RDA (Legendre & Anderson 1999). Described in the framework of multivariate ANOVA testing, the steps of a db-RDA are as follows:

1. Compute a distance matrix from the raw data using the most appropriate association coefficient.

2. Compute a PCoA of the matrix obtained in 1. If necessary, correct for negative eigenvalues (Lingoes or Caillez correction), because the aim here is to conserve all the data variation.

3. Compute an RDA, using the objects \times principal coordinates as dependent (Y) matrix and the matrix of explanatory variables as X matrix.

Figure 30 summarises the method:

![Diagram of db-RDA steps]

Figure 30 - The steps of a db-RDA. Adapted from Legendre & Anderson (1999).

Note that nowadays, thanks to the transformations proposed by Legendre & Gallagher (2001) for the species data matrices and allowing the direct application of RDA to species data, db-RDA is less used in this case.
4.10 Orthogonal factors: coding an ANOVA for RDA

As mentioned above, RDA is a linear method. It is the direct extension of multiple regression to multivariate response variables. On the other hand, ANOVA can be computed using a multiple regression approach if the factors and interactions are coded in an appropriate manner. Therefore, using the same coding, it is possible to run multivariate ANOVA using RDA, with great advantages over traditional MANOVA: there is no limitation about the number of response variables with respect to the number of objects; the ANOVA can be tested using permutations, which alleviates the problems of distribution of data (see Chapter 5); the results can be shown and interpreted with help of biplots. Furthermore, using the pre-transformations of species data, one can now compute MANOVA on species data. This is of great interest to ecologists, who use experimental approaches more and more.

The two following pages show how to code two orthogonal factors, without interaction first (when there is only one experimental or observational unit for each combination of the two factors) and with interactions (in the case of more than 1, here 2 objects per combination). This coding works for balanced experimental designs.
Coding of two orthogonal factors for ANOVA without interaction

Two orthogonal factors, one observation (object) per cell.

Factor B: 2 levels

<table>
<thead>
<tr>
<th>Factor A: 3 levels</th>
<th>Object 1</th>
<th>Object 2</th>
<th>Object 3</th>
<th>Object 4</th>
<th>Object 5</th>
<th>Object 6</th>
</tr>
</thead>
</table>

n = 6

Factor A: 3 levels, therefore 2 orthogonal variables
Factor B: 2 levels, therefore 1 variable

<table>
<thead>
<tr>
<th>Factor A</th>
<th>Factor B</th>
<th>Factor B</th>
<th>Factor A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obj.1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Obj.2</td>
<td>2</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Obj.3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Obj.4</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Obj.5</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>Obj.6</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Note: - all the columns must have zero sum;
- the number of variables needed to code a factor corresponds to the number of degrees of freedom of this factor;
- the correlation among variables is 0 everywhere;
- one cannot test interaction here: it would add 2 variables.

The total number of variables would be 5, which would leave 0 degrees of freedom.
Coding of two orthogonal factors for ANOVA with interaction

Two orthogonal factors, several observations (objects) per cell.

Factor B : 2 levels

<table>
<thead>
<tr>
<th>Factor A: 3 levels</th>
<th>Object 1</th>
<th>Object 2</th>
<th>Object 3</th>
<th>Object 4</th>
<th>Object 5</th>
<th>Object 6</th>
<th>Object 7</th>
<th>Object 8</th>
<th>Object 9</th>
<th>Object 10</th>
<th>Object 11</th>
<th>Object 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 12</td>
<td></td>
</tr>
</tbody>
</table>

Factor A: 3 levels, therefore 2 orthogonal variables
Factor B: 2 levels, therefore 1 variable

<table>
<thead>
<tr>
<th>Factor A</th>
<th>Factor B</th>
<th>Interaction (A × B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obj.1</td>
<td>2 0</td>
<td>1 2 0</td>
</tr>
<tr>
<td>Obj.2</td>
<td>2 0</td>
<td>1 2 0</td>
</tr>
<tr>
<td>Obj.3</td>
<td>2 0</td>
<td>-1 -2 0</td>
</tr>
<tr>
<td>Obj.4</td>
<td>2 0</td>
<td>-1 -2 0</td>
</tr>
<tr>
<td>Obj.5</td>
<td>-1 1</td>
<td>1 -1 1</td>
</tr>
<tr>
<td>Obj.6</td>
<td>-1 1</td>
<td>1 -1 1</td>
</tr>
<tr>
<td>Obj.7</td>
<td>-1 1</td>
<td>-1 1 -1</td>
</tr>
<tr>
<td>Obj.8</td>
<td>-1 1</td>
<td>-1 1 -1</td>
</tr>
<tr>
<td>Obj.9</td>
<td>-1 -1</td>
<td>1 -1 -1</td>
</tr>
<tr>
<td>Obj.10</td>
<td>-1 -1</td>
<td>1 -1 -1</td>
</tr>
<tr>
<td>Obj.11</td>
<td>-1 -1</td>
<td>-1 1 1</td>
</tr>
<tr>
<td>Obj.12</td>
<td>-1 -1</td>
<td>-1 1 1</td>
</tr>
</tbody>
</table>

1. All columns must have zero sum.
2. The number of variables needed to code a factor corresponds to the number of degrees of freedom of this factor; this includes the interaction.
3. The correlation among variables is 0 everywhere.
4. Interaction variables are produced by columnwise multiplication of factor variables.